Максимальная высота ми 8. Авиация россии. Варианты заправки топливом, кг

Км 1ч


Рис. 68. Максимальные углы атаки конца лопасти винта вертолета Ми-8 в горизонтальном полете в зависимости от веса и высоты полета:

а-для вертолета весом 11 100 кг; б-для вертолета весом 12 000 кг


жении у конца лопасти,в азимуте 270° угла атаки 14° (ниже кри­тического- 15°, рис. 68). Как известно, !в азимуте 270° у конца лопасти максимальный угол атаки на любой скорости полета. С увеличением скорости угол атаки увеличивается за счет увели­чения скорости (взмаха. С увеличением высоты лолета при той же скорости угол атаки будет больше за счет большего потребного шага несущего винта. При достижении угла атаки, равного 14°, скорость полета будет критическая по срыву. Эта скорость умень­шается с увеличением высоты. У вертолета Ми-8 максимальные скорости по срыву в зависимости от высоты и веса вертолета получены следующие (см. табл. 14 и рис. 67, а и 68).

Таблица 14 Максимальные скорости по срыву потока вертолета Ми-8

Как "видно из рис. 67 и табл. 13 и 14, критические скорости по срыву больше, чем максимальные скорости по мощности на взлетном режиме работы двигателей, как для вертолетов с нор­мальным, так и с максимальным полетным весом.

Максимальные скорости, установленные для эксплуатации

Эти скорости обычно меньше, чем критические по срыву и по мощности на взлетном режиме работы двигателей. Они близки к максимальным скоростям по мощности на номинальном режи­ме работы двигателей. Ограничение указанных скоростей мо­жет быть также по повышенным вибрациям, срыву (потока, по прочности несущего винта и других частей вертолета.

Для вертолета Ми-8 в зависимости от высоты полета и веса установлены следующие максимальные скорости горизонталь­ного полета для эксплуатации (см. табл. 15 и рис. 67,6).

Указанные максимальные скорости, установленные для эк­сплуатации вертолета весом 11100 кг до высоты 2000 м и для вертолета весом 12000 кг до высоты 1000 м, ограничены по ус­ловиям вибрации вертолета. На скоростях, выше установленных, вибрация у вертолета Ми-8 больше, чем у вертолета Ми-4. На высотах больше 2000 м для вертолета весом 11100 кг и больше 1000 м для вертолета весом 12000 кг максимальные скорости ограничены по срыву потока с запасом не менее 20 км/ч по при­бору по расчетной границе срыва.


Таблица 15

Максимальные скорости горизонтального полета вертолета Ми-8, установленные для эксплуатации

Максимально допустимая скорость при транспортировке гру­зов на внешней подвеске 250 км/ч по прибору и 150 км/ч при грузе весом более 2000 кг и внешней подвеске с тросом 8АТ-9600-1 диаметром 13 мм. Но эти скорости могут быть и мень­ше, в зависимости от поведения груза на подвеске.

Максимально допустимая скорость при полете с полуоткры­тыми задними створками грузовой кабины 160 км/ч по прибору»

§ 4. ОСОБЕННОСТИ ГОРИЗОНТАЛЬНОГО ПОЛЕТА И МЕТОДИКИ ЕГО ВЫПОЛНЕНИЯ НА ВЕРТОЛЕТЕ Ми-8

Для горизонтального полета скорость выбирают исходя из условий и целей полета: полет с минимальным часовым или ки­лометровым расходом топлива, по расписанию, с минимальной затратой времени, грузы размещены внутри кабины или на внеш­ней подвеске.

Методика выполнения переходного режима от набора высо­ты к горизонтальному полету с включенным автопилотом такая же, как и без автопилота. Он облегчает выполнение этого пере­ходного режима.

Перевод вертолета из режима набора высоты в режим гори­зонтального полета осуществляется ручками циклического и об­щего шага винта. Ручкой циклического шага устанавливается необходимая скорость горизонтального полета, а ручкой общего шага подбирается необходимая мощность для этой скорости. Обороты несущего винта при этом сохраняются автоматически в пределах 95±2%, если действия всеми рычагами управления будут плавными. При отклонении рычагов управления, особен­но ручкой общего шага, болеее высоким темпом возможен выход оборотов за указанные пределы. В этом случае допускаются обороты несущего винта в пределах 89-103%.


Балансировка вертолета на режиме горизонтального полета, как и на других режимах, производится при помощи электро-" магнитных муфт ЭМТ-2. Снимать усилия со всех рычагов уп­равления необходимо короткими и частыми нажатиями на кноп­ку снятия усилий (триммера) после небольших отклонений рычагов управления или после выполнения всего переходного ре­жима одним нажатием на кнопку снятия усилий. Перед нажа­тием на кнопку не следует прилагать больших усилий на рыча­ги управления, так как при этом мгновенно исчезают усилия и происходит резкое изменение положения рычагов управления, что приводит к большой разбалансировке вертолета. Выполнять переходные режимы с нажатой кнопкой не рекомендуется, так как здесь возможны лишние движения рычагами управления, что может повести к чрезмерной раскачке вертолета.

Правильность подбора необходимой мощности определяется по вариометру и высотомеру: если стрелка вариометра находит­ся около нулевого положения, а высота не меняется, то режим работы двигателей для данной скорости на данной высоте подоб­ран правильно. При этом установятся определенные обороты турбокомпрессоров, так как режим работы определяется только оборотами турбокомпрессоров. Если обороты будут больше мак­симально допустимых оборотов крейсерского режима, опреде­ленных по графику перед вылетом (см. рис. 30), то двигатели будут работать в области номинального режима. Поэтому необ­ходимо следить за временем работы двигателей: оно не должно превышать одного часа или 1/3 расчетной продолжительности полета. Обычно до истечения указанного времени за счет выго­рания топлива и уменьшения полетного веса необходимый ре­жим работы двигателей снижается до крейсерского. Если этого не произойдет за указанный срок, то необходимо снизить режим работы двигателей до значения максимально допустимых обо­ротов турбокомпрессора и уменьшить скорость полета до ско­рости, соответствующей крейсерскому режиму работы двигате­лей.

В принципе же, независимо от режима полета, разрешается работа двигателей на любом режиме. При работе на крейсер­ском режиме время не ограничивается. При работе на номина­ле-время работы 60 мин, на взлетном - 6 мин. Если двига­тели работали непрерывно на номинальном или взлетном режимах указанное время, то необходимо их перевести на пониженный режим на время не менее 5 мин, после чего опять можно работать на указанных режимах. Так же разрешается непре­рывная работа двигателей последовательно на взлетном и номи­нальном режимах с общей продолжительностью не более 66 мин. Положение рычагов управления на всем диапазоне скорос­тей горизонтального полета такое же, как и у вертолета Ми-4: с увеличением скорости ручка циклического шага должна пере­мещаться вперед и влево, левая педаль вперед до определенной


скорости. При дальнейшем разгоне скорости необходимо (пере­мещать вперед правую педаль На всем диапазоне скоростей под­держивается необходимая мощность при помощи ручки общего шага при правом положении рукоятки корректора газа.

Установившийся режим горизонтального полета осуществля­ется со всеми включенными каналами автопилота АП-34Б. Канал высоты включается на установившемся режиме горизон­тального полета на высоте не ниже 50 м. Изменение высоты по­лета (производится при выключенном канале высоты автопилота. После вывода вертолета на другую высоту необходимо вклю­чить канал высоты кнопкой «ВКЛ» на пульте управления авто­пилота.

В установившемся горизонтальном полете с освобожденным управлением вертолет сохраняет режим полета, медленно уходя с заданной скорости, так как автопилот стабилизирует не ско­рость полета, а угол тангажа. Такая неустойчивость вертолета по скорости более выражена на малых скоростях до 150 км/ч. На скоростях более 150 км/ч изменение скорости значительно меньше. Кроме того, указанная неустойчивость по скорости за­висит от точности балансировки вертолета на режиме перед включением каналов автопилота: чем точнее сбалансирован вертолет, тем лучше устойчивость. При спокойной атмосфере ав­топилот удерживает вертолет с точностью по направлению ±1°, по тангажу ±0,5°, по крену +0,5°, по высоте ±6 м до высоты 1000 м и ±12 м на высоте более 1000 м.

Пилот может вмешаться в управление и подправлять ба­лансировку вертолета не только рычагами управления, но и руч­ками центровки (рукоятками коррекции) по направлению, тан­гажу и крену в пределах ±5°. Для этого на пульте управления автопилотом имеются ручки центровки, каждое деление которых соответствует повороту вертолета вокруг соответствующей оси на 1°. Канал высоты такой ручки не имеет, и подправлять вы­соту можно только рычагом общего шага.

Нормальная работа каналов автопилота определяется коле­баниями стрелок индикаторов около нейтрального положения и характерным подергиванием вертолета, возникающим при пари­ровании возмущений. Работу канала высоты также можно кон­тролировать по изменению общего шага несущего винта, что видно по УШВ. При выключении соответствующего канала стрелка прекращает колебания, устанавливаясь в нейтральное положение.

При полете с включенным автопилотом, ввиду изменения ве­са (вертолета, метеоусловий и т. д., на вертолет будут действовать постоянные моменты. При этом каналы автопилота будут стаби­лизировать вертолет по всем направлениям, расходуя ход што­ка соответствующего гидроусилителя, стрелки индикаторов бу­дут приближаться к упорам. В этом случае необходимо ручками центровки установить стрелки в нейтральное положение. Необ-


ходимо ручкой циклического шага удерживать вертолет от неиз­бежных изменений углов крена и тангажа, выключить автопилот или данный канал, сбалансировать вертолет и вновь включить автопилот или данный канал его. Стрелки индикаторов каналов крена и тангажа («К» и «Т») можно устанавливать в нейтраль­ное.положение перед выключением автопилота, кроме ручек центровки, также и ручкой циклического шага. Такой перевод стрелок индикаторов в рабочее положение происходит без рыв­ков |в управлении вертолетом. Стрелку индикатора канала вы­соты в нейтральное положение надо перемещать ручкой общего шага: если стрелка ушла вверх, необходимо ручку общего шага опустить; при уходе стрелки вниз - поднять. Затем опять (вклю­чить канал высоты кнопкой включения на пульте автопилота. В установившемся горизонтальном полете и включенном ка­нале высоты автопилота и автоматической системы поддержания оборотов несущего винта (правая коррекция) высота полета поддерживается за счет постепенного автоматического уменьше­ния общего шага винта каналом высоты автопилота ввиду уменьшения веса вертолета за счет выгорания топлива. Ручка общего шага будет неподвижна, а указатель общего шага будет показывать уменьшение шага. Уменьшение шага винта приво­дит к попытке увеличения его оборотов, но регулятор оборотов несущего винта РО-40ВР уменьшает подачу топлива в двигате­ли, поэтому обороты несущего винта поддерживаются постоян­ными в пределах 95±2%, а обороты компрессоров будут умень­шаться. Стрелка индикатора нулевого канала высоты будет пере­мещаться от нейтрального положения вниз.

Если при горизонтальном полете канал высоты автопилота не включен, а работает только автоматическая система поддер­жания оборотов несущего винта, то по истечении времени за счет уменьшения веса вертолета, он будет стремиться (переходить к режиму набора высоты, увеличивая высоту полета, так как мощ­ность двигателей и обороты несущего винта постоянны. В этом случае пилоту необходимо периодически уменьшать мощность двигателей, опуская ручку общего шага.

Если при включении всех каналов автопилота и при правой коррекции изменить скорость горизонтального полета от эконо­мической в сторону увеличения или уменьшения только плавным и медленным движением ручки циклического шага, то высота полета и обороты несущего винта по указателю ИТЭ-1 сохраня­ются, скорость соответственно увеличивается или уменьшается. Общий шаг несущего винта то УШВ и обороты турбокомпрессо­ров по указателю ИТЭ-2 будут увеличиваться согласно общим законам аэродинамики и работе автоматической системы стаби­лизации вертолета Ми-8 по высоте.

В зонах большой турбулентности атмосферы полет должен совершаться с выключенными каналами направления и высоты при скорости 150-175 км/ч по прибору.


Горизонтальный полет по кругу с учебной целью рекоменду­ется совершать на скорости 160 км/ч.

Выполнение полетов на больших высотах, особенно близких к потолку, более сложно по сравнению с выполнением их на меньших высотах и требуют от пилота повышенного внимания и более плавной работы общим шагом несущего винта и други­ми рычагами управления.

Виражи и развороты в горизонтальном полете. Виражи и раз­вороты на вертолете Ми-8 выполняются так же, как и на верто­лете Ми-4. Если полетный вес у вертолета нормальный и ниже нормального, то виражи и развороты необходимо выполнять в диапазоне допустимых скоростей с креном до 30°. При весе бо­лее нормального, с включенным автопилотом и при полете по приборам - с креном до 15°. С учебной целью виражи рекомен­дуется совершать на скорости 160 км/ч,по прибору.

Вертолет вводится в вираж или разворот координированным движением ручки циклического шага и педали в сторону нужного разворота или виража с одновременным увеличением мощности ручкой общего шага. Так как для выполнения левого виража или разворота требуется меньшая мощность, чем для правого, то при крене до 15° на левом вираже и развороте не требуется уве­личивать мощность.

Вывод вертолета из виража или разворота необходимо начи­нать за 10-15° до намеченного ориентира или заданного направ­ления по указателю УГР-4К курсовой системы. Вывод выполня­ется координированным движением рычагов управления.

При вводе в!вираж, его выполнении и при выводе (вертолета из виража необходимо действовать всеми рычагами управления плавно и координирование, тогда вертолет не так подвергается разбалансировке, и облегчается техника пилотирования.

Радиус и время одного круга виража определяются по тем же формулам, что и для самолета. Для примера их величина в зависимости от скорости и угла крена приведена в табл. 16.

Таблица 16

Радиус и время одного круга виража в зависимости от скорости и угла

Скорость, Крен, Радиус, Время, Скорость, Крен, Радиус, Время,
км/ч град м с км/ч град м с

Полеты на малой высоте. Такие полеты выполняются при не­возможности производить руление (по состоянию грунта), при проведении специальных работ, а также с учебной целью.


Обычно полеты на малой высоте при ровном рельефе мест­ности рекомендуется выполнять на высоте до 10 м на скоростях до 80 км/ч с использованием воздушной подушки. Полеты на вы­сотах от 10 до 40 м выполнять на скоростях от 60 до 150 км/ч. При таких полетах скорость определяется по земле, указателю скорости и по указателю ДИВ-1, если он установлен, Над сильно пересеченной местностью полеты необходимо производить на высотах не менее 20 м над рельефом и на скоростях по прибо­ру не менее 60 км/ч для того, чтобы полет происходил вне зоны влияния воздушной подушки, и чтобы можно было обеспечить хорошую управляемость вертолета при действии нисходящих по­токов, обусловленных рельефом местности. При малых скорос­тях полета вертолет Ми-8 имеет повышенную вибрацию, поэто­му длительные полеты в диапазоне скоростей от 20 до 50 км/ч не рекомендуются.

При "подлетах на малой высоте необходимо учитывать ско­рость и направление ветра. При ветре до 5 м/с полеты можно совершать при любом направлении ветра с разворотом на 360° При ветре от 5 до 10 м/с можно совершать полеты против ветра и с боковым ветром до 90°. При ветре от 10 до 20 м/с полеты можно совершать только против ветра.

Подлеты на неукатанных заснеженных площадках произво­дить в случаях крайней необходимости на скоростях 20-40 км/ч, обеспечивающих горизонтальную видимость, имея ориентир «при­вязки» в точке зависания. Высота аюдлета в таких случаях долж­на быть 15 м.

Подлеты и перемещения на высотах ниже 10 м рекоменду­ется производить на скоростях до 20 км/ч, не выходя на режим тряски.

Подлеты на старт выполняются обычно на высоте до 10 м, а при порывистом ветре на высоте не менее 5 м. При этом ско­рость должна быть не более 15 км/ч, если расстояние до препят­ствий не более 50-75 м, и можно держать скорость до 70 км/ч, если расстояние до препятствий более 70 м. Подлеты выполнять на расстоянии не менее 50 м от стоянок самолетов и вертолетов. Подлеты над самолетами и вертолетами запрещаются.

Горизонтальный полет с грузами на внешней подвеске. В та­ком полете вертолет имеет большее вредное сопротивление, что приводит к необходимости увеличивать мощность для полета. При этом километровый и часовой расходы топлива увеличива­ются, дальность полета и грузоподъемность уменьшаются. Для вертолета Ми-8 установлен максимальный вес с грузами на внешней подвеске 11000 кг, максимальный груз на подвеске 2500 кг. Скорость полета также ограничена. Кроме того, вели­чина скорости устанавливается в зависимости от веса груза, его габаритов и поведения в полете. При транспортировке компакт­ных грузов скорость можно держать максимально допустимую, так как поведение вертолета при этом нормальное. При транс-



портировке крупногабаритных и парусных грузов максимально допустимая скорость уменьшается из-за значительной раскачки груза на внешней подвеске. Так, например, в одном из испыта­тельных полетов при транспортировке центроплана самолета (парусный груз) максимально возможная скорость получена 120 км/ч, а при транспортировке труб для буровой установки - 140 км/ч (см. табл. 12).

По технике пилотирования полеты с грузами на внешней спод-веске сложнее и имеют ряд особенностей. Раскачивание груза на подвеске приводит к раскачиванию вертолета, как в продоль­ном, так и (в поперечном направлениях. Поэтому балансировать вертолет в установившемся режиме полета труднее. Для предот­вращения раскачки грузов необходимо подобрать соответствую­щую скорость. Балансировать вертолет необходимо более вни­мательно и с большей тщательностью, движения рычагами управления должны быть плавными и соразмерными. Необходи­мость такой техники пилотирования объясняется не только поведением груза, но и изменением эффективности управления вертолетом за счет смещения центра тяжести всего вертолета вниз. Известно, что чем ниже центр тяжести вертолета от втулки несущего винта, к которой приложена аэродинами­ческая сила, тем больше эффективность управления. Поэтому потребные отклонения автомата перекоса и ручки циклического шага, как в продольном, так и в поперечном направлениях, бу­дут меньше. При излишних отклонениях могут создаваться та­кие углы тангажа и крена, что вывод из них будет затруднен или даже невозможен.

Выполнение разворотов с грузами на внешней подвеске так­же затруднено, поэтому их необходимо выполнять, строго сох­раняя координацию всеми рычагами управления. Максимальный допустимый угол крена не должен превышать 15°.

Горизонтальный полет осуществляется с включенными каналами автопилота АП-34Б.

При полете с грузами на внешней подвеске в условиях по­вышенной турбулентности воздуха у вертолета меняется ско­рость, появляется продольная и поперечная раскачка. В этом случае необходимо плавным движением рычагов управления удерживать заданную скорость полета. При этом уменьшается раскачка в продольном и в поперечном направлениях.

Горизонтальный полет с одним работающим двигателем. Та­кой полет может совершаться с учебной целью или при отказе одного из двигателей. Горизонтальный полет возможен с одним работающим двигателем на взлетном режиме лишь при нор­мальном полетном весе вертолета на скоростях 120-130 км/ч по прибору на высотах до 1000 м. На других скоростях и высотах, а также при весе более нормального, вертолет совершает полет со снижением.

Беспрерывный полет при одном работающем двигателе на


режиме выше номинального возможен не более 6 мин, поэтому такой полет рекомендуется для поиска площадки и посадки. Кроме того, общая продолжительность полета на одном двигате­ле не должна превышать 10% всего ресурса главного редуктора.

В учебных целях полет с одним работающим двигателем раз­решается на высотах до 3000 м с весом не более 10100 кг. В этом случае горизонтальный полет будет совершаться на номиналь­ном режиме работающего двигателя. При нормальном весе 11100 кг и на экономической скорости горизонтальный полет возможен на режиме работающего двигателя между номиналь­ным и взлетным.

Развороты при полете с одним работающим двигателем необ­ходимо выполнять с креном не более 15°.

Ми-8 (многоцелевой транспортный вертолет)



Описание вертолета

Первый вариант вертолета Ми-8 с четырехлопастным несущим винтом был испытан в 1962 году. В октябре 1963 года начал проходить испытания второй вариант с пятилопастным несущим винтом, который в конце 1965 года был принят в серийное производство. Ми-8 превосходит вертолет Ми-4 по максимальной грузоподъемности в 2,5 раза и по скорости в 1,4 раза. Трансмиссия вертолета Ми-8 аналогична вертолету Ми-4 . Лопасти несущего винта цельнометаллические. Они состоят из полого лонжерона, спрессованного из алюминиевого сплава. Все лопасти несущего винта оснащены пневматической сигнализацией повреждения лонжерона. В системе управления используются мощные гидроусилители.

Ми-8 оборудован противообледенительной системой, которая работает как в автоматическом, так и в ручном режимах. Система внешней подвески вертолета позволяет перевозить грузы массой до 3000 кг. При отказе одного из двигателей в полете другой двигатель автоматически выходит на повышенную мощность, при этом горизонтальный полет выполняется без снижения высоты. Ми-8 оборудован автопилотом, обеспечивающим стабилизацию крена, тангажа и рыскания, а также постоянную высоты полета. Навигационно-пилотажные приборы и радиосредства, которыми оснащен вертолет, позволяют совершать полеты в любое время суток и в сложных метеоусловиях.

Вертолет, в основном, используется в транспортном (Ми-8Т) и пассажирском вариантах. В пассажирском варианте Ми-8П оборудован для перевозки 28 пассажиров. По специальному заказу, в Казани, может быть изготовлен вариант с салоном «люкс», рассчитанный на семь пассажиров. Выполнены заказы для Б. Ельцина, Н. Назарбаева, М. Горбачева и других. Военный вариант Ми-8Т имеет пилоны для подвески вооружения (НУР, бомбы). Следующая военная модификация Ми-8ТВ имеет усиленные пилоны для подвески большого количества вооружения, а также пулеметную установку в носовой части кабины. За счет перестановки РВ на левую сторону была увеличена его эффективность.

Ми-8МТ — последняя модификация вертолета, которая явилась логическим завершением перехода от транспортного к транспортно-боевому вертолету. Установлены более современные двигатели ТВЗ-117 МТ с дополнительной газотурбинной установкой АИ-9В и пылезащитным устройством на входе в воздухозаборники. Для борьбы с ракетами типа «земля-воздух» имеются системы рассеивания горячих газов двигателей, отстрела ложных тепловых целей и генерации импульсных ИК-сигналов. В 1979-1988 гг. вертолет Ми-8МТ принимал участие в военном конфликте в Афганистане.

В состав оборудования входят — командные УКВ радиостанции Р-860 и Р-828, связные КВ радиостанции Р-842 и «Карат», самолетное переговорное устройство СПУ-7. Четырехканальный автопилот АП-34Б для автоматической стабилизации вертолета по тангажу, крену, курсу и высоте полета. Оборудование для полетов по приборам в СМУ днем и ночью, включающее два авиагоризонта АГБ-ЗК, два указателя частоты вращения НВ, комбинированную курсовую систему ГМК-1А, автоматический радиокомпас АРК-9 или АРК-У2, радиовысотомер РВ-З. На Ми-8Т имеется аппаратура речевых сообщений РИ-65 для оповещения экипажа об аварийных ситуациях в полете. На военных вариантах Ми-8МТ установлены станция ИК помех «Липа», экранновыхлопные устройства для подавления ИК излучения двигателей, контейнеры с ЛЦ, кабина экипажа бронирована. По желанию заказчика устанавливается система внешней подвески грузов и лебедка грузоподъемностью 150 кг.

Тактико-технические характеристики

Год принятия на вооружение — 1966
Диаметр главного винта — 21,29 м
Диаметр хвостового винта — 3,91 м
Длина — 18,22 м
Высота — 5,65 м
Масса, кг
- пустого — 7260
- нормальная взлетная — 11100
- максимальная взлетная — 12200
Внутренние топливо — 1450 + 1420 кг
Тип двигателя — 2 ГТД Климов ТВ2-117А (ТВ3-117МТ)
Мощность — 2 х 1710 л.с. (2 х 3065 л.с.)
Максимальная скорость — 260 км/ч
Крейсерская скорость — 225 км/ч
Практическая дальность — 1200 км
Дальность действия — 465 км
Практический потолок — 4500 м
Статический потолок — 1900 м
Экипаж — 2-3 чел

28 пассажиров или 32 солдата или 12 носилок с сопровождающими или 4000 кг груза в кабине или 3000 кг на подвеске.

Вооружение

1 7.62-мм или 12.7-мм пулемет. Боевая нагрузка — 1000 кг на 4 узлах подвески: 4 ПУ УВ-16-57 16х55-мм или УВ-32-57 32х57-мм, или 4 250-кг бомбы, или
6 ПТУР Малютка или 4 ПТУР М-17П Скорпион.

Модификации

Ми-8Т (Hip-C) - основная военно-транспортная модификация.

Ми-8ТВ - модернизированная версия с усиленным вооружением.

Ми-8ТВК - экспортная версия Ми-8ТВ с 6 ПТУР Малютка.

Ми-9 - летающий командный вертолет на базе Ми-8Т.

Ми-8СМВ - вертолет РЭБ и РЭР.

Ми-8ППА - модернизированный варинт Ми-8СМВ в роли связного вертолета и вертолета РЭР.

Ми-8МТ - транспортно-боевой вертолет на базе Ми-8ТВ (1991 г.).

ОБЩАЯ ХАРАКТЕРИСТИКА ВЕРТОЛЕТА Ми-8Т

1. ОБЩИЕ СВЕДЕНИЯ О ВЕРТОЛЕТЕ

Вертолет Ми-8 предназначен для перевозки различных грузов внутри грузовой кабины и на внешней подвеске, почты, пассажиров, а также для проведения строительно-монтажных и других работ в труднодоступной мест­ности.

Рис. 1.1. Вертолет Ми-8 (общий вид)

Вертолет (рис. 1.1) спроектирован по одновинтовой схеме с пятилопастным несущим и трехлопастным рулевым винтами. На вертолете установле­ны два турбовинтовых двигателя ТВ2-117А со взлетной мощностью 1500 л.с. каждый, что обеспечивает высокую безопасность полетов, так как полет воз­можен и при отказе одного из двигателей.

Вертолет эксплуатируется в двух основных вариантах: пассажирском Ми-8П и транспортном Ми-8Т. Пассажирский вариант вертолета предназна­чен для межобластных и местных перевозок пассажиров, багажа, почты и малогабаритных грузов. Он рассчитан на перевозку 28 пассажиров. Тран­спортный вариант предусматривает перевозку грузов массой до 4000 кг или пассажиров в количестве 24 человек. По желанию заказчика пас­сажирский салон вертолета может быть переоборудован в салон с по­вышенным комфортом на 11 пассажиров.

Пассажирский и транспортный варианты вертолета могут быть переобо­рудованы в санитарный вариант и в вариант для работы с внешней подвеской.

Вертолет в санитарном варианте позволяет перевозить 12 лежачих боль­ных и сопровождающего медработника. В варианте для работы с внешней подвеской осуществляется перевозка крупногабаритных грузов массой до 3000 кг вне фюзеляжа.

Для перелетов вертолета на большие дальности предусмотрена установка в грузовой кабине одного или двух дополнительных топливных баков.

Существующие варианты вертолета снабжены электролебедкой, позво­ляющей с помощью бортовой стрелы производить подъем (спуск) на борт вер­толета грузов массой до 150 кг, а также при наличии полиспаста затягивать в грузовую кабину колесные грузы массой до 3000 кг.

Экипаж вертолета состоит из двух пилотов и бортмеханика.

При создании вертолета особое внимание было уделено высокой надежно­сти, экономичности, простоты в обслуживании и эксплуатации.

Безопасность полетов на вертолете Ми-8 обеспечивается:

Установкой на вертолете двух двигателей ТВ2-117А(АГ), надежностью работы этих двигателей и главного редуктора ВР-8А;

Возможностью совершать полет в случае отказа одного из двигателей, а также перейти на режим авторотации (самовращения несущего винта) при отказе обоих двигателей;

Наличием отсеков, изолирующих двигатели и главный редуктор с по­мощью противопожарных перегородок;

Установкой надежной противопожарной системы, обеспечивающей туше­ние пожара в случае его возникновения как одновременно во всех отсеках, так и в каждом отсеке в отдельности;

Установкой дублирующих агрегатов в основных системах я оборудовании вертолета;

Надежными и эффективными противообледенительными устройствами ло­пастей несущего и рулевого винтов, воздухозаборников двигателей и лобо­вых стекол кабины экипажа, что позволяет совершать полет в условиях об­леденения;

Установкой аппаратуры, обеспечивающей простое и надежное пилотиро­вание и посадку вертолета в различных метеорологических условиях;

Приводом основных агрегатов систем от главного редуктора, обеспечива­ющим работоспособность систем при отказе двигателя:

Возможностью быстрого покидания вертолета после его посадки пасса­жирами и экипажем в аварийных случаях.

2. ОСНОВНЫЕ ДАННЫЕ ВЕРТОЛЕТА

Летные данные

(транспортный и пассажирский варианты)

Взлетная масса (нормальная), кг.............. 11100

Максимальная скорость полета (по прибору), км/ч, 250

Статический потолок, м............................ 700

Крейсерская скорость полета по прибору на высоте
500 м, км/ч ………………………………………………220

Экономическая скорость полета (по прибору), км/ч. 120


топливом 1450 кг, км................................ 365


варианте с заправкой топливом 2160 кг, км. . .620

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 2870 кг, км... 850

Дальность полета (на высоте 500 м) с заправкой
топливом 2025 кг (подвесные баки увеличенной
вместимости), км................................................ 575

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 2735 кг (подвес­ные баки

увеличенной вместимости), км.... 805

Дальность полета (на высоте 500 м) в перегоночном
варианте с заправкой топливом 3445 кг (подвесные баки

увеличенной вместимости), км.... 1035

Примечание. Дальность полета рассчитана с учетом 30-минутного остатка топлива после посадки

Геометрические данные

Длина вертолета, м:

без несущего и рулевого винтов.................. 18,3

с вращающимися несущим и рулевым винтами …25,244

Высота вертолета, м:

без рулевого винта........................................ 4,73

с вращающимся рулевым винтом................ 5,654

Расстояние от конца лопасти несущего винта до ­
хвостовой балки на стоянке, м..................... 0,45

Расстояние от земли до нижней точки фюзеляжа

(клиренс), м................................................... 0,445

Площадь горизонтального оперения, м 2 ….. 2

Стояночный угол вертолета................. 3°42"

Фюзеляж

Длина грузовой кабины, м:

без грузовых створок............................ 5,34

с грузовыми створками на уровне 1 м от пола 7,82

Ширина грузовой кабины, м:

на полу................................................... 2,06

по коробам отопления........................... 2,14

максимальная......................................... 2,25

Высота грузовой кабины, м.................. 1,8

Расстояние между силовыми балками пола, м … 1,52

Размер аварийного люка, м…………………… 0,7 X1

Колея погрузочных трапов, м.............. 1,5±0,2

Длина пассажирской кабины, м............ 6,36

Ширина пассажирской кабины (по полу), м... 2,05

Высота пассажирской кабины, м 1,8

Шаг кресел, м.................................................. 0,74

Ширина прохода между креслами, м... 0,3

Размеры гардероба (ширина, высота, глубина), м 0,9 X1,8 X 0,7
» сдвижной двери (ширина, высота), м. . 0,8 X1.4
» проема, по заднюю входную дверь в пассажирском

варианте (ширина, высота), м.......... 0,8 X1>3

Размер аварийных люков в пассажирском

варианте, м............................................. 0,46 X0,7

Размер кабины экипажа, м.................... 2,15 X2,05 X1,7

Регулировочные данные

Угол установки лопастей несущего винта (по указа­телю шага винта):

минимальный................................................. 1°

максимальный........................................ 14°±30"

Угол отгиба триммерных пластин лопастей винта -2 ±3°

» установки лопастей рулевого винта (на r=0,7) *:

минимальный (левая педаль до упора) ................... 7"30"±30"

максимальный (правая педаль до упора)………….. +21°±25"

* r- относительный радиус

Весовые и центровочные данные

Взлетная масса, кг:

максимальная для транспортного варианта …….. 11100

» с грузом на внешней подвеске …………… 11100

транспортный вариант.......................... 4000

на внешней подвеске.............................. 3000

пассажирский вариант (человек).......... 28

Масса пустого вертолета, кг:

пассажирский вариант........................... 7370

транспортный »................................ 6835

Масса служебной нагрузки, в том числе:

масса экипажа, кг................................... 270

» масла, кг........................................................... 70

масса продуктов, кг.............................................. 10

» топлива, кг......................................................... 1450 - 3445

» коммерческой нагрузки, кг............................... 0 - 4000

Центровка пустого вертолета, мм:

транспортный вариант........................................... +133

пассажирский » ....................................... +20

Допустимые центровки для загруженного вертолета, мм:

передняя.................................................................. +370

задняя...................................................................... -95

3. АЭРОДИНАМИЧЕСКИЕ И ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЕРТОЛЕТА

По аэродинамической схеме вертолет Ми-8 представляет собой фюзеляж с пятилопастным несущим, трехлопастным рулевым винтами и неубирающимися шасси.

Лопасти несущего винта прямоугольной формы в плане с хордой, равной 0,52 м. Прямоугольная форма в плане в аэродинамическом отношении счи­тается хуже других, но она проста в производстве. Наличие триммерных пластин на лопастях позволяет изменять их моментные характери­стики.

Профиль лопасти является важнейшей геометрической характеристикой несущего винта. На вертолете подобраны различные профили по длине ло­пасти, что заметно улучшает не только аэродинамические характеристики несущего винта, но и летные свойства вертолета. От 1-го до 3-го сечения при­менен профиль NACA-230-12, а от 4-го до 22-го - профиль NACA-230-12M (модифицированный) *. У профиля NACA-230-12M число Мкр = 0,72 при угле атаки нулевой подъемной силы. При увеличении углов атаки a°(рис. 1.2) Мкр уменьшается и при наивыгоднейшем угле атаки, при котором коэффициент подъемной силы С у = 0,6, Мкр = 0,64. В этом случае крити­ческая скорость в стандартной атмосфере над уровнем моря составит:

V KP == а Мкр = 341 0,64 = 218 м/с, где a- скорость звука.

Следовательно, на концах лопастей мож­но создавать скорость менее 218 м/с, при которой не будет появляться скачков уп­лотнения и волнового сопротивления. При оптимальной, частоте вращения несущего винта 192 об/мин окружная скорость кон­цов лопастей составит:

U = wr = 2 prn / 60 = 213,26 м/с, где w - угловая скорость;

r- радиус окруж­ности, описываемый концом лопасти.

Рис. 1.2. Изменение коэффициента подъемной силы С у от углов ата­ки a° и числа М профиля NACA-230-12M

Отсюда видно, что окружная скорость близка к критической, но не превышает ее. Лопасти несущего винта вертолета име­ют отрицательную геометрическую крутку, изменяющуюся по линейному закону от 5° у 4-го сечения до 0° у 22-го. На участке между 1-ми 4-м сечениями крутка отсутст­вует и установочный угол сечений лопасти на этом участке равен 5°. Крутка лопасти на такую большую величину существенно улучшила ее аэродинамические свойства и летные характеристики вертолета, в связи с чем более равномерно распределяется подъемная сила по длине лопасти.

* Отсек от 3-го до 4-го сечения является пе­реходным. Профиль лопасти несущего винта - смотри рис. 7.5.

Лопасти винта имеют переменную как абсолютную, так и относительную толщину профиля. Относительная толщина профиля с составляет в комле 13%, на участке от г=_0,23до 7=0,268- 12%, а на участке от г = 0,305 до конца лопасти- 11,38%. Уменьшение толщины лопасти к ее концу улучшает аэродинамические свойства вин­та в целом за счет увеличения критиче­ской скорости и Мкр концевых частей ло­пасти. Уменьшение толщины лопасти к концу приводит к уменьшению лобового сопротивления и снижению потребного кру­тящего момента.

Несущий винт вертолета имеет сравни­тельно большой коэффициент заполнения - 0,0777. Такой коэффициент дает возможность создать большую тягу при умеренном диаметре винта и тем самым удерживать в полете лопасти на небольших установочных углах, при которых углы атаки ближе к наивы­годнейшим на всех режимах полета. Это позволило увеличить к. п. д. винта и отодвинуть срыв потока на большие скорости.

Рис. 1.3. Поляра несущего винта вертолета на режиме висения: 1 - без влияния земли; 2 - с влиянием земли.

Аэродинамическая характеристика несущего винта вертолета представ­лена в виде его поляры (рис. 1.3), которая показывает зависимость коэффи­циента тяги Ср и коэффициента крутящего момента т кр от величины общего шага несущего винта <р. По поляре видно, что чем больше общий шаг несуще­го винта, тем больше коэффициент крутящего момента, а следовательно, больше коэффициент тяги. При наличии «воздушной подушки» тяга несущего винта будет больше, чем без нее при том же шаге винта и коэффициенте кру­тящего момента.

Лопасти рулевого винта прямоугольной формы в плане с профилем NACA-230M не имеют геометрической крутки. Наличие у втулки рулевого винта совмещенного горизонтального шарнира типа «кардан» и компенсатора взмаха позволяет обеспечить более ровное перераспределение подъемной си­лы по ометаемой винтом поверхности в полете.

Фюзеляж вертолета аэродинамически несимметричен. Это видно из кри­вых изменения коэффициентов подъемной силы фюзеляжа С 9ф и лобового сопротивления С в зависимости от углов атаки а ф (рис. 1.4). Коэффици­ент подъемной силы фюзеляжа равен нулю при угле атаки несколько больше 1 , поэтому и подъемная сила будет по­ложительной на углах атаки больше Г, а на углах атаки меньше 1 -отрицательной. Минимальное значение коэффициента лобо­вого сопротивления фюзеляжа С будет при угле атаки, равном нулю. Ввиду того что на углах атаки больше или меньше нуля ко­эффициент С ф увеличивается, выгодно со­вершать полет на углах атаки фюзеляжа, близких к нулю. С этой целью предусмот­рен угол наклона вала несущего винта впе­ред, составляющий 4,5°.

Фюзеляж без стабилизатора статически неустойчив, так как увеличение углов ата­ки фюзеляжа приводит к увеличению коэффициента продольного момента, а следовательно, и продольного момента, действующего на кабрирование и стремящегося к дальнейшему увеличению угла атаки фюзеляжа. Наличие стабилизатора на хвостовой балке фюзеля­жа обеспечивает продольную устойчивость последнему лишь на малых установочных углах от +5 до -5° и в диапазоне небольших углов атаки фюзеляжа от -15 до + 10°. На больших углах установки стабилизатора и больших углах атаки фюзеляжа, что соответствует полету на режиме авто­ротации, фюзеляж статически неустойчив. Это объясняется срывом потока со стабилизатора. В связи с наличием у вертолета хорошей управляемости и достаточных запасов управления на всех режимах полета на нем при­менен стабилизатор, не управляемый в полете с установочным углом - 6°.

Рис. 1.4. Зависимость коэффици­ента подъемной силы Суф и лобо­вогосопротивления Схф фюзеляжа от углов атаки a° фюзеляжа

В поперечном направлении фюзеляж устойчив лишь на больших отрица­тельных углах атаки -20° в диапазоне углов скольжения от -2 до + 6°. Это вызвано тем, что увеличение углов скольжения приводит к увеличению коэффициента момента крена, а следовательно, и поперечного момента, стре­мящегося и дальше увеличить угол скольжения.

В путевом отношении фюзеляж неустойчив практически на всех углах атаки при малых углах скольжения от -10 до +10°, на углах, больше указанных, характеристики устойчивости улучшаются. При углах сколь­жения 10° < b < - 10° фюзеляж нейтрален, а при скольжении больше 20° он приобретает путевую устойчивость.

Если рассматривать вертолет в целом, то хотя он и обладает достаточной динамической устойчивостью, но не вызывает больших затруднений при пилотировании даже без автопилота. Вертолет Ми-8 в общем оценен с удов­летворительными характеристиками устойчивости, а с включенными систе­мами автоматической стабилизации эти характеристики значительно улуч­шились, вертолету придана динамическая устойчивость по всем осям и по­этому пилотирование существенно облегчается.

4. КОМПОНОВКА ВЕРТОЛЕТА

Вертолет Ми-8 (рис. 1.5) состоит из следующих основных частей и систем: фюзеляжа, взлетно-посадочных устройств, силовой установки, трансмиссии, несущего и рулевого винтов, управления вертолетом, гидравлической систе­мы, авиационного и радиоэлектронного оборудования, системы отопления и вентиляции кабин, системы кондиционирования воздуха, воздушной и противообледенительной систем, устройства для внешней подвески грузов, такелажно-швартовочного и бытового оборудования. Фюзеляж вертолета включает носовую 2 и центральную 23 части, хвосто­вую 10 и концевую 12 балки. В носовой части, являющейся кабиной экипа­жа, размещены сиденья пилотов, приборные доски, электропульты, автопи­лот АП-34Б, командные рычаги управления. Остекление кабины экипажа обеспечивает хороший обзор; правый 3 и левый 24 блистеры снабжены меха­низмами аварийного сброса.

В носовой части фюзеляжа расположены ниши для установки контейне­ров с аккумуляторами, штепсельные разъемы аэродромного питания, труб­ки приемников воздушного давления, две рулежно-посадочные фары и люк с крышкой 4 для выхода к силовой установке. Носовая часть фюзеляжа от­делена от центральной части стыковочным шпангоутом № 5Н, в стенке которого имеется дверной проем. В проеме двери установлено откидное сиденье борт­механика. Спереди, на стенке шпангоута № 5Н, расположены этажерки ра­дио- и электрооборудования, сзади - контейнеры двух аккумуляторных батарей, коробка и пульт управления электролебедкой.

В центральной части фюзеляжа расположена грузовая кабина, для входа в которую слева имеется сдвижная дверь 22, снабженная механизмом ава­рийного сброса. У верхнего переднего угла проема сдвижной двери снару­жи крепится бортовая стрела. В грузовой кабине вдоль правого и левого бортов установлены откидные сиденья. На полу грузовой кабины располо­жены швартовочные узлы и электролебедка. Над грузовой кабиной разме­щены двигатели, вентилятор, главный редуктор с автоматом перекоса и не­сущим винтом, гидропанель и расходный топливный бак.

К узлам фюзеляжа снаружи крепятся амортизаторы и подкосы главных 6, 20 и передней / стоек шасси, подвесные топливные баки 7, 21. Впереди правого подвесного топливного бака расположен керосиновый обогреватель.

Грузовая кабина заканчивается задним отсеком с грузовыми створками. В верхней части заднего отсека расположен радиоотсек, в котором установ­лены панели под приборы радио- и электрооборудования. Для входа из гру­зовой кабины в радиоотсек и хвостовую балку имеется люк. Грузовые створ­ки закрывают проем в грузовой кабине, предназначенный для закатки и вы­катки колесной техники, погрузки и выгрузки крупногабаритных грузов.

В пассажирском варианте к специальным профилям, расположенным по полу центральной части фюзеляжа, крепятся 28 пассажирских кресел. По правому борту в задней части кабины расположен гардероб. Правая борто­вая панель имеет шесть прямоугольных окон, левая - пять. Задние борто­вые окна встроены в крышки аварийных люков. Грузовые створки в пасса­жирском варианте укороченные, на внутренней стороне левой створки рас­положено багажное отделение, а в правой створке размещены короба под контейнеры с аккумуляторами. В грузовых створках сделан проем под зад­нюю входную дверь, состоящую из створки и трапа.


Рис. 1.5 Компоновочная схема вертолета.

1-передняя нога шасси; 2-носовая часть фюзеляжа; 3, 24-сдвижные блистеры; 4-крышка люка выхода к двигателям; 5, 21-главные ноги шасси; 6-капот обогревателя КО-50; 7, 12-подвесные топливные баки; 8-капоты; 9-редук-торная рама; 10-центральная часть фюзеляжа; 11-крышка люка в правой грузовой створке; 12, 19-грузовые створки; 13-хвостовая балка; 14-стабилизатор; 15-концевая балка; 16-обтекатель; 17-хвостовая опора; 18-трапы; 20-щиток створки; 23-сдвижная дверь; 25-аварийный люк-окно.

К центральной части фюзеляжа пристыкована хвостовая балка, к узлам которой крепится хвостовая опора и неуправляемый стабилизатор. Внутри хвостовой балки в верхней ее части проходит хвостовой вал трансмиссии. К хвостовой балке пристыкована концевая балка, внутри которой установ­лен промежуточный редуктор и проходит концевая часть хвостового вала трансмиссии. Сверху к концевой балке крепится хвостовой редуктор, на ва­лу которого установлен рулевой винт.

Вертолет имеет неубирающееся шасси трехопорной схемы. Каждая стой­ка шасси снабжена жидкостно-газовыми амортизаторами. Колеса передней стойки самоориентирующиеся, колеса главных стоек снабжены колодочными тормозами, для управления которыми вертолет оборудован воздушной сис­темой.

Силовая установка включает два двигателя ТВ2-117А и системы, обеспечивающие их работу.

Для передачи мощности от двигателей к несущему и рулевому винтам, а также для привода ряда агрегатов используется трансмиссия, состоящая из главного, промежуточного и хвостового редукторов, хвостового вала, вала привода вентилятора и тормоза несущего винта. Каждый двигатель и главный редуктор имеют свою автономную маслосистему, выполненную по прямой одноконтурной замкнутой схеме с принудительной циркуляцией мас­ла. Для охлаждения маслорадиаторов двигателей и главного редуктора, стартер-генераторов, генераторов переменного тока, воздушного компрес­сора и гидронасосов на вертолете предусмотрена система охлаждения, со­стоящая из высоконапорного вентилятора и воздухопроводов.

Двигатели, главный редуктор, вентилятор и панель с гидроагрегатами закрыты капотом. При открытых крышках капота обеспечивается свобод­ный доступ к агрегатам силовой установки, трансмиссии и гидросистемы, при этом открытые крышки капота двигателей и главною редуктора являются рабочими площадками для выполнения технического обслуживания систем вертолета.

Вертолет оборудован средствами пассивной и активной защиты от пожара. Продольная и поперечная противопожарные перегородки делят под­капотное пространство на три отсека: левого двигателя, правого двигателя, главного редуктора. Активная противопожарная система обеспечивает пода­чу огнегасящего состава из четырех баллонов в горящий отсек.

Несущий винт вертолета состоит из втулки и пяти лопастей. Втулка имеет горизонтальные, вертикальные и осевые шарниры и снабжена гидравличес­кими демпферами и центробежными ограничителями свеса лопастей. Лопасти цельнометаллической конструкции имеют визуальную систему сигнали­зации повреждения лонжерона и электротепловое противообледенительное устройство.

Рулевой винт толкающий, изменяемого в полете шага. Он состоит из втулки карданного типа и трех цельнометаллических лопастей, снабженных электротепловым противообледенительным устройством.

Управление вертолетом сдвоенное состоит из продольно-поперечного уп­равления, путевого управления, объединенного управления «Шаг - газ» и управления тормозом несущего винта. Кроме того, имеется раздельное уп­равление мощностью двигателей и их остановом. Изменение общего шага не­сущего винта и продольно-поперечное управление вертолетом осуществляют­ся с помощью автомата перекоса.

Для обеспечения управления вертолетом в систему продольного, попе­речного, путевого управления и управления общим шагом включены по не­обратимой схеме гидроусилители, для питания которых на вертолете предус­мотрена основная и дублирующая гидросистемы.

Установленный на вертолете Ми-8 четырехканальный автопилот АП-34Б обеспечивает стабилизацию вертолета в полете по крену, курсу, тангажу и высоте.

Для поддержания в кабинах нормальных температурных условий и чис­тоты воздуха вертолет оборудован системой отопления и вентиляции, кото­рая обеспечивает подачу подогретого или холодного воздуха в кабины эки­пажа и пассажиров. При эксплуатации вертолета в районах с жарким клима­том вместо керосинового обогревателя могут быть установлены два борто­вых фреоновых кондиционера.

Противообледенительная система вертолета защищает от обледенения лопасти несущего и хвостового винтов, два передних стекла кабины экипа­жа и воздухозаборники двигателей.

Противообледенительное устройство лопастей винтов и стекол кабины экипажа - электротеплового, а воздухозаборников двигателей - воздушнотеплового действия.

Установленное на вертолете авиационное и радиоэлектронное оборудова­ние обеспечивает выполнение полетов днем и ночью в простых и сложных ме­теорологических условиях.

— средний многоцелевой вертолёт, который применяется для пассажирских и грузовых перевозок. Он выполняет широкий комплекс задач в любых регионах планеты.

Разработка вертолёта В‑8 (Ми‑8) началась в ОКБ им. М.Л. Миля (ныне ОАО "Московский вертолетный завод им. М.Л. Миля", входящий в холдинг "Вертолеты России") в мае 1960 года для замены хорошо зарекомендовавшего себя в эксплуатации многоцелевого поршневого вертолёта Ми‑4. Ми‑8 создавался как глубокая модернизация вертолета Ми‑4 с газотурбинным двигателем. Вертолёт разрабатывался одновременно в двух вариантах: пассажирском Ми‑8П и транспортном Ми‑8Т.
Первый прототип нового вертолета (с одним двигателем и четырехлопастным несущим винтом) поднялся в воздух в июле 1961 года, второй (с двумя двигателями и пятилопастным винтом) — в сентябре 1962 года, первый полет опытного вертолета состоялся в 1962 году.

Серийное производство Ми‑8 началось в 1965 году на ОАО "Казанский вертолетный завод" и ОАО "Улан‑Удэнский вертолетный завод".

На вертолетах Ми‑8 в 1964‑1969 годах было установлено семь мировых рекордов (в основном женщинами‑вертолетчицами).

Ми‑8 превосходит вертолет Ми‑4 по максимальной грузоподъемности в 2,5 раза и по скорости в 1,4 раза. Трансмиссия вертолета Ми‑8 аналогична вертолету Ми‑4.

Вертолет выполнен по одновинтовой схеме с рулевым винтом, двумя газотурбинными двигателями и трехопорным шасси.
Лопасти несущего винта цельнометаллические. Они состоят из полого лонжерона, спрессованного из алюминиевого сплава. Все лопасти несущего винта оснащены пневматической сигнализацией повреждения лонжерона. В системе управления используются мощные гидроусилители. Ми‑8 оборудован противообледенительной системой, которая работает как в автоматическом, так и в ручном режимах. Система внешней подвески вертолета позволяет перевозить грузы массой до 3000 килограмм.
При отказе одного из двигателей в полете другой двигатель автоматически выходит на повышенную мощность, при этом горизонтальный полет выполняется без снижения высоты. Ми‑8 оборудован автопилотом, обеспечивающим стабилизацию крена, тангажа и рыскания, а также постоянную высоты полета. Навигационно‑пилотажные приборы и радиосредства, которыми оснащен вертолет, позволяют совершать полеты в любое время суток и в сложных метеоусловиях.

Вертолет, в основном, используется в транспортном и пассажирском вариантах. В пассажирском варианте вертолет (Ми‑8П) оборудован для перевозки 28 пассажиров. По специальному заказу, в Казани, может быть изготовлен вариант с салоном "люкс", рассчитанный на семь пассажиров. Такие заказы выполнялись для Бориса Ельцина, Нурсултана Назарбаева, Михаила Горбачева.

Военный вариант Ми‑8Т имеет пилоны для подвески вооружения (неуправляемые ракеты, бомбы). Следующая военная модификация Ми‑8ТВ имеет усиленные пилоны для подвески большого количества вооружения, а также пулеметную установку в носовой части кабины.
Ми‑8МТ — модификация вертолета, которая явилась логическим завершением перехода от транспортного к транспортно‑боевому вертолету. Установлены более современные двигатели ТВЗ‑117 МТ с дополнительной газотурбинной установкой АИ‑9В и пылезащитным устройством на входе в воздухозаборники. Для борьбы с ракетами типа "земля‑воздух" имеются системы рассеивания горячих газов двигателей, отстрела ложных тепловых целей и генерации импульсных ИК‑сигналов. В 1979‑1988 годах вертолет Ми‑8МТ принимал участие в военном конфликте в Афганистане.

Ми‑8 может использоваться при решении самых различных задач : для огневой поддержки, подавления огневых точек, доставки десанта, перевозки боеприпасов, оружия, грузов, продуктов, медикаментов, эвакуации раненых и погибших.
Вертолет неприхотлив и безотказен. Ми‑8 за рубежом, да и у нас называют "рабочей лошадкой", "солдатской машиной".
Вертолеты Ми‑8 являются наиболее распространенными в мире транспортными вертолетами.
В истории мирового вертолетостроения по общему числу выпущенных машин — свыше 12 тысяч (около 8000 в Казани и свыше 4000 в Улан‑Удэ) — вертолет Ми‑8 не имеет аналогов среди аппаратов своего класса.
По числу модификаций Ми‑8 является мировым рекордсменом. Их насчитывается более сотни. Модификации создавались на МВЗ им. М. Л. Миля, на казанском и улан‑удэнском заводах, ремонтных предприятиях, непосредственно в воинских частях и отрядах Аэрофлота, а также за рубежом в процессе эксплуатации.

Ми-8 представляет собой многоцелевой и широко используемый вертолет. Спроектирован и разработан конструкторами ОКБ М.Л. Миля в начале 60-х годов. Эта советская разработка является самой массовой двухдвигательной воздушно-транспортной машиной в мире (состоит в списке самых распространенных вертолетов в мировой истории авиации). Имеет два направления: военное и гражданское.

В июле 1961 года в первый полет поднялся прототип В-8. Спустя год вышел второй экземпляр В-8А. В 1967 году уже полностью доработанный и сменивший старое название на новое Ми-8 встал на вооружение ВВС Советского Союза. Поскольку модель показала себя одной из самых удачных, нынешние российские ВВС также заказывают этот вертолет. На данный момент этот агрегат используется в пятидесяти странах мира.

Ключевой модификацией 80-х годов стал разработанный Ми-8МТ. Усовершенствованный вариант, или, как его еще называют, «изделие 88», отличается от собрата улучшенной силовой механизацией (два двигателя ТВЗ-117) и установленной вспомогательной конструкцией силового типа. Правда, этот вариант не так распространен по миру.

В 1991 году начались разработки нового гражданского воздушно-транспортного вертолёта Ми-8АМТ. В конце 90-х был разработан воднотранспортный штурмовой вертолет Ми-8АМТШ. Всего их выпущено свыше 3500 экземпляров.

Конструкция Ми-8

Ми-8 – это одновинтовой вертолет, на который установлены пять несущих и три рулевых лопастных винта. Несущие винты закреплены вертикальными, горизонтальными и осевыми шарнирами, а рулевые лопасти, соответственно, совмещенного карданного типа. Трансмиссия точно такая же, как и у Ми-4. Цельнометаллические лопасти винта включают в себя полый лонжерон, спрессованный из алюминиевого сплава. К его задней корме прикреплены 24 отсека с сотовым наполнителем из алюминиевой фольги (образования профиля). Несущего винта лопасти оснащены сигнализацией возможного повреждения лонжерона.

Усовершенствованная антифризная система не дает обледенеть вертолету. Она электризована и имеет способность работать как в автономном, так и в ручном режимах (подпитка 208 вольт). В том случае, если произошел отказ одного из двигателей, соответственно, другой автоматически увеличивает свою мощность. И это не влияет на горизонтальный полет и высоту. Качественному управлению несущим винтом способствуют три гидроусилителя КАУ-30Б, а рулевым – РА-60Б.

Трехопорное шасси не убирается. Хвостовая опора не дает коснуться земли рулевому винту. Благодаря системе внешней подвески вертолет может перевозить груз массой до трех тысяч килограммов. Стабилизацию крена, направления, тангажа и высоту полета обеспечивает четырехканального типа автопилот АП-34.

Пассажирская модификация может вмещать до 18 кресел, а транспортная − 24 места. Внутренний климат, поддержку тепла и холода контролируют КО-50 (керосиновый обогреватель) и специально разработанная система вентиляции. Благодаря навигационным приборам и радиооборудованию Ми-8 может совершать полеты, несмотря на погодные условия и время суток.

В зависимости от способов применения существует колоссальная разница между модификациями. Одни из первых Ми-8 взлетали в воздух благодаря двум двигателям ТВ2-117. Их мощность составляла 1500 л.с., а 10-ступенчатый компрессор запускался от стартера-генератора ГС-18ТО. Запуск стартера-генератора первого двигателя питается от шести аккумуляторных батарей 12САМ28 напряжением 24 В, а второй – от стартера-генератора уже работающего двигателя.

Во время работы двигателей ГС-18ТО выдается напряжение 27 В в систему основного электроснабжения. Два аккумулятора установлены в грузовой кабине, а остальные четыре вмонтированы в пилотской кабине. Хоть их емкость и небольшая, все же она не мешает питать электроэнергией пять запусков двигателей поочередно. Они отдают ток свыше 600-800 ампер, заряжаясь при этом от генераторов (постоянный ток) и могут автоматически включаться и выключаться. Эта способность стала возможной благодаря дифференциально-минимальным реле (контроль работы генератора).

Преобразователь ПТ-500Ц питает гироскопические приборы трехфазным напряжением 36 вольт. Генератор СГО-30У дает однофазный ток (208 В) в элементы обогрева лобовых стекол и винтов. От СГО-30У отходят два однофазных трансформатора ТС/1-2 и Тр-115/36. Первый питает навигационное оборудование, а второй – приборы контроля трансмиссии и двигателей. В случае неполадок и отказа работы СГО-30У все оборудование в автономном режиме переходит к преобразователю ПО-750А.

Более поздние серии Ми-8МТ, Ми-17 и другие значительно отличаются от базовой модели. Установленные двигатели ТВ3-117 намного мощнее. Подачу воздуха к стартерам осуществляет ВСУ АИ-9В и стартерный генератор СТГ-3. Система электроснабжения выдает напряжение 208 В с частотой 400 Гц. Она питается от генераторов СГС-40ПУ, которые размещены на главном редукторе. Для запуска ВСУ и в случае необходимости аварийного питания установлены аккумуляторные батареи 12САМ-28.

Основное питание осуществляется тремя выпрямительными устройствами ВУ-6А. Первый генератор отвечает за подпитку током ВУ №1, элементов обогрева трансформатора и винтов, а второй питает ВУ №2 и №3, механизм обогрева стекол и ПЗУ двигателей. В отдельных модификациях дополнительно обогревается трансформатор ТС/1-2.

При отказе одного генератора ТС310С04Б переключается на второй; если же отказали оба, тогда запускаются преобразователи ПТ-200Ц и ПО-500А.

На вертолете установлены две гидросистемы: основная и дублирующая. Насос НШ-39М, установленный на главный редуктор, создает давление в каждой из них. Его регулировка происходит специальными автоматами ГА-77В. Поддержка в основной системе происходит двумя гидроаккумуляторами, в дублирующей – одним. Раздельные электромагнитные краны ГА192 включают гидропитание РА-60Б, КАУ-30Б общего несущего винта и двух КАУ-30Б управления поточного и поперечного типов.

Существует много видов модернизации Ми-8. Они делятся на типы:

1. Опытные

    В-8 – первый опытный вертолет с одним установленным ГТД АИ-24В;

    В-8А – второй экземпляр с наличием двух ГТД ТВ2-117;

    В-8АТ – третий созданный опытный образец;

    В-8АП – четвертая и последняя опытная модель.

2. Пассажирские

    Ми-8П – вертолет пассажирского типа на 28 мест;

    Ми-8ПА – модификация с двигателями ГТД ТВ2-117Ф;

3. Транспортники

    Ми-8Т – вертолет транспортно-десантный;

    Ми-8ТС – экспортный образец для ВВС Сирии. В учет конструкции принят сухой климат.

4. Многоцелевые

    Ми-8ТВ – принят на вооружение СССР в 1968 году. Модификация включает в себя бронирование кабины пилотов, двигателей и капотов редуктора, а также наличие четырех ПТУР «Малютка» и пулемета А-12.7;

    Ми-8АТ – двигатели ТВ2-117АГ;

    Ми-8АВ – использовался для установки мин (до 200 штук) против сухопутных войск;

    Ми-8АД – предназначен для установки малогабаритных противопехотных мин;

    Ми-8МТ – двигатели ТВ3-117;

    Ми-8МТВ – двигатели ТВ3-117ВМ;

  • Ми-8МТВ-5 – модифицированная носовая часть вертолета;

    Ми-8МТКО – монтаж светотехники и приборов ночного видения;

  • Ми-171 – выдан сертификат Международного Авиационного комитета. Его модификации – Ми-171А1 и Ми-17КФ.

Также существовали Ми-8ТГ, Ми-14, Ми-18, Ми-8МСБ. Для особых случаев был разработан целый ряд вертолетов специального назначения. Следует отметить некоторые из них. К примеру, Ми-8ТЭЧ-24 использовался для техническо-ремонтных работ. На борту присутствовало слесарное и контрольно-проверочное оборудование. Ми-8СПА занимался поисковыми и спасательными работами. Ми-8К – артиллерийский воздушный корректировщик. Тот же Ми-8ВКП представлял непосредственно командный пункт воздушного плана. Воздушный госпиталь представлялся вертолетом Ми-8МБ.

Особо отличался от всех Ми-8АМТШ. Вертолет транспортно-штурмового типа широко используется многими странами. Оснащен комплексом вооружения и усиленным бронированием кабины пилотов и двигателя.

Разработка вертолета.

В 1960 г. ОКБ Миля М.Л. начало разработку нового транспортного вертолета, который бы заменил собой устаревший Ми-4. Опытный прототип с обозначением В-8 совершил первый полет в июне 1961 г. На вертолете был установлен один ГТД АИ-24 и четырехлопастной несущий винт от Ми-4. Позже конструкторы провели ряд усовершенствований. Силовую установку заменили на два ГТД TB2-117. Несущий винт стал пятилопастным.

Двигатель АИ-24.

Производство и выпуск.

С 17 сентября 1962 г. начались летные испытания. Вертолет полностью оправдал возложенные на него надежды. С 1965 г. он пошел в серийное производство под обозначением Ми-8. Конструкция данной машины оказалась настолько удачной, что его производство и модернизация продолжаются до сих пор. На сегодняшний день Ми-8 является одним из самых распространенных транспортных вертолетов в мире. Было выпущено более 8000 машин в разных модификациях. Вертолет эксплуатируется в более чем 50-ти странах мира.

Ми-8 кабина

По своей конструкции Ми-8 – вертолет одновинтовой схемы. Фюзеляж полумонококовый каркасный состоит из кабины пилотов, грузового отсека и хвостовой балки. Кабина пилотов трехместная рассчитанная на двух летчиков и бортмеханика. Грузовая кабина может быть приспособлена для перевозки грузов или оборудована сидениями для пассажиров. В транспортном варианте погрузка производится через двухстворчатый грузовой люк. Шасси трехопорное неубирающееся. Силовая установка состоит из двух ГТД ТВ2-117А (ТВ3-117МТ), 2х1710 (2х3065) л.с. Несущий винт пятилопастной с цельнометаллическими лопастями. Рулевой винт трехлопастной.

Двигатель ТВ2-117А.

Модификации вертолета.

Существует более 30-ти модификаций этой машины, основными среди которых являются Ми-8Т (транспортный) и Ми-8П (пассажирский). Ми-8АМТШ представляет собой десантно-штурмовой вариант с ракетным и пулеметным вооружением. Вертолет используется для выполнения широкого спектра задач, как в гражданской авиации, так и в ВВС. С 70-х годов Ми-8 использовался во многих военных конфликтах в разных уголках планеты.

Ми-8П (пассажирский).

Ми-8Т (транспортный).

Основные характеристики Ми-8

Максимальная взлетная масса вертолета составляет 12000 (13000) кг. Максимальная скорость 250 км/ч. Практический потолок 4500 м. Практическая дальность 480 км. Нагрузка может состоять из 4000 кг в грузовой кабине или 3000 кг на внешней подвеске. Пассажирский вариант рассчитан на перевозку 24 пассажиров. В различных десантно-транспортных модификациях вертолет может вместить около 30-ти солдат или 12 раненых на носилках с сопровождающими.