Полиэтилен: свойства и применение. Полиэтилен (ПЭ): физико-химические и потребительские свойства, структура потребления, области применения полиэтилена Полиэтилен состав строение свойства применение

Полиэтиленовые трубы, как и любые другие, имеют систему маркировки. Начинающим строителям может быть сложно понять, что собой представляет труба полиэтиленовая SDR 11 или что зашифровано в маркировке «ПЭ 80 SDR 21».

Наша статья пояснит значение нужных параметров, кроме того, в ней представлена краткая технологическая характеристика и главные области применения наиболее популярных видов полиэтиленовых труб.

Что такое SDR и ПЭ?

SDR представляет собой отношение наружного диаметра полиэтиленовой (или любой другой) трубы к толщине ее стенки. Таким образом, с увеличением показателя SDR истончается стенка трубы, и наоборот, толщина стенки растет с уменьшение показателя.

После приставки ПЭ («полиэтилен») производители указывают марку полиэтилена. В наше время чаще всего встречаются ПЭ-80 и ПЭ-100.

Материалы имеют некоторые различия:

  1. ПЭ 100 имеет более упорядоченную структуру кристаллической решетки, за счет которой после сварки можно получить более прочный и равномерный сварной шов.
  2. Однако из-за первого различия для спайки полиэтилена ПЭ 80 нужна меньшая температура.
  3. Материал марки ПЭ 100 в целом является более плотным и прочным, а значит, может использоваться в более жестких условиях эксплуатации.
  4. На производство труб необходимого диаметра потребуется большее количество полиэтилена ПЭ 80 (по сравнению с аналогом), что повышает стоимость конечного продукта, а также цену доставки его на строительный объект

В статье « » можно ознакомится с данными показателями более подробно.

Совет от профессионала: Может сложиться мнение, что раз полиэтилен 100-той марки более надежен, стоек и дешев, лучше применять только его. Однако на практике каждый вид труб нашел свое оптимальное применение. Рассмотрим их более подробно.

Характеристика изделий из ПЭ 80

ПЭ 80 SDR 21

Это трубы низкого давления, которые предназначены для использования при монтаже безнапорной, а также слабонапорной канализации, создаваемой в небольших многоквартирных домах. Возможно создание напорного водоснабжения небольших территорий открытой местности. Этот тип труб полностью сертифицирован для использования трубопроводов, обеспечивающих холодное водоснабжение и функционирование канализации. Специалисты не рекомендуют применение таких труб в таких случаях:

  • монтаж газопроводов из-за недостаточно большой толщины стенки трубы,
  • укладка магистральных трубопроводов, так как чрезмерное сдавливание может привести к физическому разрушению трубы.

ПЭ 80 SDR 17

Труба полиэтиленовая SDR 17 отличается средним значением соотношения наружного диаметра выпускаемых на сегодняшний день труб к толщине их стенки. Трубы ПЭ 80 SDR 17 рекомендованы к применению в очень широком диапазоне. Их используют:

  • для систем водопровода, предназначенных для подачи питьевой воды;
  • для водопроводов хозяйственного назначения от сооружений, где производится водоочистка, до потребителя;
  • для монтажа оросительных систем.

Выбор этих труб для монтажа коммуникаций малоэтажного дома считается оптимальным, так как при их монтаже будет обеспечена высокая прочность, легкость трубопроводов, а затраты на приобретение материала будут сравнительно невысокими.

ПЭ 80 SDR 13,6

Трубы ПЭ 80 SDR 13,6 являются трубами низкого давления и рекомендованы к использованию при монтаже трубопроводов, транспортирующих холодную питьевую воду.

Высокие технические качества и потребительские характеристики этого вида труб обусловлены применением усовершенствованной марки полиэтилена (ПЭ80) и использования нового метода в процессе очистки сырья.

Совет от профессионала: В связи с длительным сроком гарантии (до 70 лет) такие трубы широко применяют при создании долгосрочных водопроводных систем.

Характеристика изделий из ПЭ 100

ПЭ 100 SDR 26

Это трубы для транспортировки хозяйственной и питьевой воды в городских условиях и за городом. Для их производства используется полиэтилен ПЭ100, отличительными качествами которого являются высокая плотность, благодаря чему трубы из этого материала превосходят изделия из ПЭ80 по долгосрочной прочности и устойчивости к растрескиванию.

Кроме того, качественные показатели материала позволили значительно снизить толщину стенок изделия, что облегчило его вес. Трубы ПЭ100 рекомендуются к широкому применению в таких случаях:

  • для монтажа водопроводов;
  • для трубопроводов, предназначенных для транспортировки жидких пищевых продуктов, например, при производстве молока, соков, при пивоварении и виноделии.

ПЭ 100 SDR 21

Трубы ПЭ 100 SDR 21 применяют для строительства водопроводов. Проходя по трубам этого вида, вода сохраняет свои вкусовые качества и характеризуется отсутствием посторонних запахов.

Этот вид труб может быть успешно использован при необходимости совместного применения с трубами из стали, так как специальные разъемные и неразъемные переходники, которыми оснащают концы каждой трубы такого вида (с одного конца – пластик, с другого – металл), обеспечивают возможность соединения как с пластиковыми, так и со стальными трубами. Процессы коррозии, другие виды разрушения и засоры таким трубам не страшны.

ПЭ 100 SDR 17

Изделия с пометкой ПЭ 100 SDR 17 являются трубами нового поколения благодаря применению прогрессивных технологий, используемых при производстве полиэтилена ПЭ100. Особенностью этих изделий являются уникально высокие показатели прочности, что оказывает значительное влияние на усиление эксплуатационных характеристик труб из полиэтилена.

Трубы этого вида рекомендованы к использованию в системах напорного водоснабжения и газопроводах. При этом такие трубы считаются идеальными для монтажа трубопроводов, имеющих большое поперечное сечение. При изготовлении труб этого вида оказывается весьма существенной экономия материала в связи с возможностью уменьшения толщины стенки при сохранении высокой прочности изделия. Технические характеристики таких труб позволяют их широкое использование при строительстве трубопроводов, отличающихся большой протяженностью.

ПЭ 100 SDR 11

Труба полиэтиленовая SDR 11 изготавливается из полиэтилена, получаемого при низком давлении. При этом высокая плотность материала труб ПЭ 100 SDR 11 позволяет использовать их для водопроводов с высоким давлением. Применяемый для изготовления труб материал обеспечивает высокое качество и экологическую безопасность питьевой воды.

Трубы этого вида подходят для эксплуатации систем с расширенными возможностями водообеспечения. Возможно использование таких труб для монтажа канализационных коллекторов – химическая стойкость использованного при производстве материала обеспечивает высокую прочность и долговечность труб. Укладка таких труб возможна при любом виде грунта.

Такова характеристика наиболее применяемых видов изделий полиэтилена для трубопроводов. Стоит отметить, что на качество готовой продукции в значительной мере влияет марка полиэтиленовых труб, и этот фактор нужно обязательно учитывать при покупке.

Если раньше при монтаже водопровода, канализации, при проведения газа всегда использовали только металлические или чугунные трубы. Альтернативы просто не было. Сегодня все чаще применяют изделия из полимеров, и, в частности, — полиэтиленовые трубы. Они все больше вытесняют с рынка металлические аналоги, а все благодаря невысокой цене, простоте в обращении, длительному сроку эксплуатации. Полярности ПЭ трубам добавляет простота монтажа — есть фитинги, которые устанавливаются руками. Это очень удобно, например, при устройстве водопровода или системы полива на даче.

Свойства, достоинства, недостатки

Полиэтиленовые трубы применяют для транспортировки различных жидких и газообразных веществ. В литературе можно встретить сокращенное обозначение: в русском варианте это ПЭ, в международном — PE или PE-X для сшитого полиэтилена.

Они имеет отличные свойства:


Отличный набор свойств привел к тому, что полиэтиленовые трубы становятся все более популярными. Но, чтобы не было неожиданностей, необходимо знать их недостатки. Их не очень много, но они довольно серьезные.

  • Полиэтилен горит, и при горении выделяет вредные вещества.
  • Слабая стойкость к ультрафиолету. Под воздействием солнца материал становится хрупким и ломким. Но этой болезни не подвержены трубы из сшитого полиэтилена, именно они стали в последнее время лидерами продаж.
  • Большое температурное расширение — оно в 10 раз больше чем у стали. Для нейтрализации этого недостатка устанавливается компенсатор.
  • При замерзании жидкости в трубопроводе, полиэтилен может порваться. Потому при использовании полиэтиленовых труб для организации водоснабжения частного дома или дачи, его укладывают ниже глубины промерзания или утепляют сверху, применяют дополнительные методы обогрева ().

Это все недостатки. Теперь о разновидностях. По способу производства есть три вида труб из полиэтилена:


В данных названиях кроется определенный парадокс. Когда говорят о высоком или низком давлении полиэтиленовых труб, имеют в виду способ их производства. Но часто это воспринимается как область использования. Реально же все наоборот. Трубы, произведенные при высоком давлении, получаются менее прочными. Их можно использовать только для безнапорных систем (без насосов). Для систем напорного водоснабжения их делают, но прочность добирают за счет толщины стенок. При обычной толщине стенок их область использования — канализация, дренажные системы, ливневки и т.п. Тут их качества оптимальны.

В напорных трубопроводах, там где высокое давление, используются как раз полиэтиленовые трубы низкого давления. Они более прочные но, одновременно, более хрупкие, намного хуже гнутся. Это тоже не очень хорошо. Зато они выдерживают значительные перепады давления без какого-либо вреда. И еще надо сказать, что оба этих типа полиэтиленовых труб подходят только для холодной воды — горячую они не выдерживают, могут расплавиться.

А вот третий тип — из сшитого полиэтилена — это вариант с высокой прочностью, гибкостью. Выдерживают такие изделия высокое давление (до 20 Атм) и температуры до +95°C, то есть PE-X трубы можно применять и для горячего водоснабжения, а также для систем отопления. Кстати, их этого типа полимера делают металлопластиковые трубы. Однако и тут есть одно «но» — этот тип материала не сваривается. При монтаже трубопровода из сшитого полиэтилена используют фитинги с прокладками. Второй тип сборки — клеевой, когда стыки соединяемых элементов промазываются клеем.

Маркировка и диаметры

Полиэтиленовые трубы обычно бывают черного или ярко-синего цвета, из сшитого полиэтилена могут иметь ярко-красный цвет. Окрашиваются так они специально — чтобы их проще было отличить от прочих полимеров. На стенке вдоль могут быть нанесены полосы синего цвета, если она предназначена для холодной воды, желтого, если применяется она для газопровода. Форма выпуска — в бухтах длиной от 20 до 50 метров (обычно малые диаметры) и кусками по 12 метров (или нужной длины по договоренности).

Диаметры полиэтиленовых труб изменяются в широком диапазоне — от 20 мм до 1200 мм. Изделия малого сечения (до 40 мм) используются в основном для водопроводов и систем отопления в частных домах и квартирах, более серьезные (до 160 мм) идут на стояки систем водоснабжения, отопления и канализации. Большие диаметры — это уже промышленная и производственная сфера. Для частных строений и квартир практически не используется.

Плотность полиэтилена

Для изготовления труб используется полиэтилен разной плотности. Обозначается плотность цифрами, которые стоят после аббревиатуры:


Что еще может быть интересно: полиэтиленовые трубы могут быть еще и армированными. Вообще они производятся методом экструзии — в размягченном состоянии материал выдавливается через насадку, затем отправляется на калибровку, где ему придают требуемое сечение и размер. При производстве армированных полиэтиленовых труб волокна капрона, полистирола или поливинилхлорида (ПВХ) запаиваются внутри стенки. Оборудование для этого процесса намного более сложное, потому и цена на армированные ПЭ трубы значительно выше.

Диаметр полиэтиленовых труб и что такое SDR

В маркировке полимерных труб есть существенное отличие — указывается наружный диаметр. Но толщина стенки изменяется в больших пределах, так что внутренний диаметр приходится высчитывать — от наружного отнимать удвоенную толщину стенки. Толщина стенки в маркировке прописывается после указания наружного диаметра (обычно ставят * или знак «х»). Например: 160 х 14,6. Это обозначает что данная труба имеет наружный диаметр 160 мм, толщину стенки 14,6 мм. Можно посчитать и внутренний диаметр полиэтиленовой трубы: 160 мм — 14,6 мм*2 = 130,8 мм.

Еще в маркировке присутствует аббревиатура SDR и какие-то цифры. Цифры — это отношение наружного диаметра к толщине стенки. Этот показатель отражает прочность стенок и их возможность противостоять скачкам давления.

Чем меньше показатель SDR, тем более прочной (но и более тяжелой) является труба. Правда это справедливо в пределах изделий одной плотности. Например, ПЭ 80 SDR11 — более прочная, чем ПЭ 80 SDR 17.

Наименование ПЭ трубы Характеристики Область применения
ПЭ 63 SDR 11 Низкая плотность, плохо переносят перепады температур Внутренние холодные трубопроводы
ПНД ПЭ-63 SDR 17,6 ГОСТ 18599-2001(2003), давление не выше 10 Атм Внутренние водопроводы с невысоким давлением для подвода холодной воды
ПЭ 80 SDR 13,6 Плотность выше, но перепады температур переносят плохо Водопроводы для подвода холодной воды, системы полива
ПЭ 80 SDR 17 Плотность выше, но перепады температур Водопроводы как в помещениях, так и на улице, напорные системы полива
ПЭ 100 SDR 26 Высока плотность, способность переносить перепады температур Любые трубопроводы для транспортировки жидкостей (воды, молока, соков и т.п.)
ПЭ 100 SDR 21 Увеличенная толщина стенок Любые трубопроводы, в том числе и газовые
ПЭ 100 SDR 17 Увеличенная толщина стенок, но и большая масса Чаще используются для помышленных целей
ПЭ 100 SDR 11 Полиэтилен низкого давления, высокая прочность, повышенная химическая стойкость Может использоваться при монтаже канализационных коллекторов, прокладывается в любом типе грунта

Серия трубы и номинальное давление

Следующий параметр, который может быть важен при выборе — серия. Обозначается буквой S, за которой стоят цифры. Отображает способность стенок сопротивляться давлению. Это отношение того давления, которое она может выдержать (определяется в лабораторных условиях) к рабочему. Чем больше цифра, тем прочнее труба.

Номинальное давление ПЭ труб разной плотности с разным SDR

На практике этот показатель редко принимают во внимание, так как он более «лабораторный», чем практический. Намного более важным может оказаться номинальное давление, на которое рассчитаны стенки. Эти данные представлены на фото выше. Давление находится на пересечении столбцов и строк, указано в Атмосферах. Например, для трубы PE 80 SDR 13,6 рабочее давление равно PN10 (10 Атм). Это значит, что при транспортировке сред температурой не более +20°C и давлении не более 10 Атм, срок службы данной трубы — 50 лет.

Нормативные документы

Для стандартизации выпускаемой продукции были разработаны ГОСТы и отраслевые стандарты. Нормативная база по этому виду материалов появилась не так давно — уже в нынешнем тысячелетии — после 2000 года. В маркировке обычно указывается стандарт, которому отвечает данный вид продукции. По названию ГОСТа определяется область применения (из названий ГОСТов), но непрофессионалам проще ориентироваться на наличие полос соответствующего цвета (голубые — для холодной воды, желтые — для газа).

Вот стандарты для России:


Есть стандарты для Украины:

  • ДСТУ Б В.2.7-151:2008 «Трубы полиэтиленовые для подачи холодной воды»
  • ДСТУ Б В.2.5-322007 «Трубы безнапорные из полипропилена, полиэтилена, непластифицируемого поливинилхлорида и фасонные изделия к ним для внешних сетей канализации домов и сооружений и кабельной канализации»
  • ДСТУ Б В.2.7-73-98 «Трубы полиэтиленовые для подачи горючих газов»

При желании все их можно изучить. В большинстве своем они представляют собой таблицы, в которых указан весь сортамент продукции с указанием из параметров.

Для идентификации на полиэтиленовые трубы нанесена маркировка. Надписи наносятся на каждом метре или около того. Первым указывается название фирмы-производителя, может стоять логотип кампании. Этот знак не обязательный, но является хорошим признаком — предприятие не боится за свой товар.

  • обозначение материала трубы, в данном случае — ПЭ — полиэтилен;
  • плотность полиэтилена — для этого примера 80;
  • потом SDR трубы — 11;
  • следующим стоит наружный диаметр и толщина стенки: 160 мм диаметр трубы, 14,6 мм — толщина стенки;
  • в последней позиции указывается ГОСТ или ДСТУ, которому отвечает данный тип трубы.

Приведенная на фото труба — для газопроводов это подчеркивается трижды — нанесенными желтыми полосами, надписью «газ» в маркировке и наименованием ГОСТа — 50838-2009 — это стандарт, по которому производятся пластиковые трубы для газопроводов.


Международный знак вторичной переработки для полиэтилена низкой плотности Общие Термические свойства

Представляет собой воскообразную массу белого цвета (тонкие листы прозрачны и бесцветны). Химически- и морозостоек, изолятор , не чувствителен к удару (амортизатор), при нагревании размягчается (80-120°С), при охлаждении застывает, адгезия (прилипание) - чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном - похожим материалом растительного происхождения.

История

Изобретателем полиэтилена считается немецкий инженер Ганс фон Пехманн, который впервые случайно получил этот продукт в 1899 году . Однако это открытие не получило распространения. Вторая жизнь полиэтилена началась в 1933 году благодаря инженерам Эрику Фосету и Реджинальду Гибсону. Сначала полиэтилен использовался в производстве телефонного кабеля и лишь в 1950-е годы стал использоваться в пищевой промышленности как упаковка .

Названия

Полиэтилен высокой плотности имеет зарегистрированный товарный знак СНОЛЕН (Свидетельство на товарный знак № 380910)

Получение

На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:

Получение полиэтилена высокого давления

Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП), образуется при следующих условиях:

  • температура 200-260 °C ;
  • давление 150-300 МПа ;
  • присутствие инициатора (кислород или органический пероксид);

в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму . Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000-500 000 и степень кристалличности 50-60 . Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.

Получение полиэтилена среднего давления

Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:

  • температура 100-120 °C;
  • давление 3-4 МПа;
  • присутствие катализатора (катализаторы Циглера - Натта, например, смесь TiCl 4 и R 3);

продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000-400 000, степень кристалличности 80-90 %.

Получение полиэтилена низкого давления

Полиэтилен низкого давления (ПЭНД), или Полиэтилен высокой плотности (ПЭВП), образуется при следующих условиях:

  • температура 120-150 °C;
  • давление ниже 0.1 - 2 МПа;
  • присутствие катализатора (катализаторы Циглера-Натта, например, смесь TiCl 4 и R 3);

Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000-3 000 000, степень кристалличности 75-85 %.

Следует иметь в виду, что названия «полиэтилен низкого давления», «среднего давления», «высокой плотности» и т. д. имеют чисто риторическое значение. Так, полиэтилен, получаемый по 2- и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.

Другие способы получения полиэтилена

Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.

Модификации полиэтилена

Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путём получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом , полиизобутиленом, каучуками и т. п.

На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации - привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.

Особняком стоят модификации так называемого «сшитого» полиэтилена ПЭ-С (PE-X) . Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счёт этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий.

Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.

Молекулярное строение

Макромолекулы полиэтилена высокого давления (n ≅1000) содержат боковые углеводородные цепи C 1 -С 4 , молекулы полиэтилена среднего давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена низкого давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкая кристалличность и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.

Показатели, характеризующие строение полимерной цепи различных видов полиэтилена:
Показатель ПЭВД ПЭСД ПЭНД
Общее число групп СН 3 на 1000 атомов углерода: 21,6 5 1,5
Число концевых групп СН 3 на 1000 атомов углерода: 4,5 2 1,5
Этильные ответвления 14,4 1 1
Общее количество двойных связей на 1000 атомов углерода 0,4-0,6 0,4-0,7 1,1-1,5
в том числе:
винильных двойных связей (R-CH=CH 2), % 17 43 87
винилиденовых двойных связей (), % 71 32 7
транс-виниленовых двойных связей (R-CH=CH-R"), % 12 25 6
Степень кристалличности, % 50-65 75-85 80-90
Плотность, г/см³ 0,91-0,93 0,93-0,94 0,94-0,96

Полиэтилен HDPE (Hight Density PE - высокая плотность)

Физико-химические свойства ПЭНД при 20°C:
Параметр Значение
Плотность, г/см³ 0,94-0,96
при растяжении 100-170
при статическом изгибе 120-170
при срезе 140-170
относительное удлинение при разрыве, % 500-600
модуль упругости при изгибе, кгс/см² 1200-2600
предел текучести при растяжении, кгс/см² 90-160
относительное удлинение в начале течения, % 15-20
твёрдость по Бринеллю , кгс/мм² 1,4-2,5

С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.

С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определённого предела, после которого также начинает снижаться

Изменение разрушающего напряжения при сжатии, статическом изгибе и срезе в зависимости от температуры (определено при скорости деформации 500 мм/мин и толщине образца 2 мм):
Разрушающее напряжение, кгс/см² Температура, ºС
20 40 60 80
при сжатии 126 77 40 -
при статическом изгибе 118 88 60 -
при срезе 169 131 92 53

Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).

Полиэтилен высокого давления LDPE (Low Density PE - низкая плотность)

Химические свойства

Общие свойства

Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами , даже концентрированной серной кислоты , но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора .

При комнатной температуре нерастворим и не набухает ни в одном из известных растворителей. При повышенной температуре (80 °C) растворим в циклогексане и четырёххлористом углероде . Под высоким давлением может быть растворён в перегретой до 180 °C воде .

Со временем, деструктурирует с образованием поперечных межцепных связей, что приводит к повышению хрупкости на фоне небольшого увеличения прочности. Нестабилизированный полиэтилен на воздухе подвергается термоокислительной деструкции (термостарению). Термостарение полиэтилена проходит по радикальному механизму, сопровождается выделением альдегидов, кетонов, перекиси водорода и др.

Полиэтилен низкого давления (ПЭНД), или высокой плотности (HDPE), применяется при строительстве полигонов переработки отходов, накопителей жидких и твёрдых веществ, способных загрязнять почву и грунтовые воды.

Переработка

Полиэтилен (кроме сверхвысокомолекулярного) перерабатывается всеми известными для пластмасс методами, такими как экструзия , экструзия с раздувом, литьё под давлением, пневматическое формование. Экструзия полиэтилена возможна на оборудовании с установленным «универсальным» червяком.

Применение

Малотоннажная марка полиэтилена - так называемый «сверхвысокомолекулярный полиэтилен», отличающийся отсутствием каких-либо низкомолекулярных добавок, высокой линейностью и молекулярной массой, используется в медицинских целях в качестве замены хрящевой ткани суставов. Несмотря на то, что он выгодно отличается от ПЭНД и ПЭВД своими физическими свойствами, применяется редко из-за трудности его переработки, так как обладает низким ПТР и перерабатывается только литьём.

Утилизация

Переработка

Изделия из полиэтилена пригодны для переработки и последующего использования.

Сжигание

При нагревании полиэтилена выше 140 °С возможно выделение в воздух летучих продуктов термоокислительной деструкции, содержащих уксусную кислоту, формальдегид (оказывает общетоксичное действие), ацетальдегид (вызывает раздражение слизистых оболочек верхних дыхательных путей, удушье, резкий кашель, бронхиты, воспаление легких), оксид углерода (вызывает удушье).

Полимер представляет собой органическое соединение, относится к классу полиолефинов. Термопластичный полимер этилена своеобразная масса прозрачных тонких листов имеет множество практичных качеств, сделавших его незаменимых в обиходе. Его часто называют

История возникновения

Первая дата упоминания об изобретения полиэтилена относится к 1899 г. Родина возникновения химического соединения – Германия. Однако заслуга практичного применения и распространения материала в его современном виде принадлежит инженерам Гибсону и Фосету. С середины прошлого столетия для производства кабельной продукции, позднее для выработки упаковочного материала широкое использование получил синтетический полимерный материал. Так применение полиэтилена в промышленности позволило создавать новые виды продукции.

Химическая формула полиэтилена (CH2CHR)n

Разновидности

Известно две основные группы полимеров, которые различают по прочности и плотности основы материала. Это

  • Полиэтилен высокой плотности (высокого давления)
  • Полиэтилен низкой плотности (низкого давления)
  • Промышленность также выпускает полиэтилен средней плотности.

В разных источниках можно встретить другие названия, к примеру, сополимеры и гомополимеры. Но все они являются производными от двух основных групп. В процессе производства разработаны различные технологии выпуска широко востребованного материала. Именно технологические различия и физические свойства полиэтилена обосновывают разнообразность данного вида продукции.

Высокая прочность материала, другие востребованные свойства, которые обосновывают широкое использование тонкой прозрачной пленки, в сочетании с относительно низкой стоимостью производства, позволяют постоянно расширять область применения. Особенное свойство, обуславливающее термопластичность полиэтилена, вывело продукт на верхние позиции популярных упаковочных материалов.

Особенности химического состава дают поистине неограниченные возможности его использования. В своей основе вещество является высокомолекулярным соединением, которое состоит из длинных разветвленных цепей. В зависимости от технологических особенностей производственного процесса при полимеризации вещества изменяются свойства конечного продукта.

Полимеризация при давлении 130 -150 МПа дает полиэтилен низкой плотности, он более пластичный. Полиэтилен высокой плотности, имеет склонность растрескиваться при физическом воздействии. Это обуславливается тем, что изготавливается в процессе каталитической полимеризации, линейная структура практически не содержит боковых ответвлений.

Свойства

В зависимости от плотности молекулярной массы продукта могут меняться его физические свойства полиэтилена.

Полиэтилен низкого давления свойства :

  • Имеет высокую способность к растяжению.
  • Стоек к химическим соединениям.
  • Не пропускает влагу.
  • Высокая теплостойкость.
  • Морозоустойчивость при сильном охлаждении.

Полиэтилен низкого давления применение :

  • Изготавливается пищевая и упаковочная пленка.
  • Рабочие перчатки и изоляционные материалы.
  • Широкое применение в кабельной промышленности.

Полиэтилен высокого давления свойства :

  • Допускается растрескивание под воздействием нагрузок.
  • Может деформироваться и менять изначальные размеры.
  • Отличается высокой химической стойкостью.
  • Диэлектричен.
  • Высокая радиационная устойчивость.
  • Морозоустойчив.

В промышленности из него изготавливается тара, упаковка для парфюмерной и пищевой промышленности (бутылки, тюбики и др.). Пригоден для изготовления контейнеров, труб и деталей трубопроводов. Разнообразие и физические свойства полиэтилена делают возможным успешно использовать материал в разных сферах деятельности. Материал занимает лидирующие позиции по использованию среди других пластмасс.

Важно. Полиэтилен безопасный для здоровья и экологически безвредный материал. Легко подлежит переработке, используется во вторичной форме.

Основные особенности присущие синтетическому материалу придают различия молекулярно-массовых распределений внутри полимера. Чем выше плотность молекулярной массы, тем жестче и тверже становится пластмасса. Эти химические свойства полиэтилена влияют на влагопроницаемость, прозрачность и стойкость при сохранении целостности поверхности готовой продукции.

Сферы применения

Изделия из полиэтилена применяются практически везде. Из прочного и недорогого материала изготавливают упаковку и контейнера для транспортировки товаров на длительные расстояния. Уникальные диэлектрические свойства полиэтилена нашли свое применение в производстве инструмента, защитной и рабочей одежды, кабельной продукции, товарах бытового применения и многое другое.

Универсальные свойства и применение полиэтилена в самых различных сферах повышает спрос и стимулирует разработку новых видов товаров и изделий. Из пнд изготавливают:

  • Провода для линий электропередач.
  • Изделия для использования в медицине.
  • Геотекстиль.
  • Новые виды строительных и отделочных материалов.
  • Инструменты и инвентарь для садово-огородного применения.
  • Изделия для авиационной промышленности.

Сфер применения полимера много, так применение пнд обусловливают особенности физических свойств и технические характеристики готовой продукции. Структура молекулы полиэтилена нд отличается кристалличностью и имеет иную плотность. Особенности производства – температура изготовления 120-150 0 С, давление до 2 МПа. Для выработки требуется присутствие специального катализатора.

При охлаждении полимера в процессе производства образуются плотные соединение имеющие стабильную устойчивость к высоким температурам. Из такого материала изготавливаются изделия, пригодные для кипячения и контакта с высокотемпературной средой.

Не менее широко используется полиэтилен высокого давления.Его примененяют при изготовлении товаров для морской, автомобильной, строительной промышленности и иных сферах производства. В основу производства легли некоторые химические отличия пластмассы, которые базируются на более низкой степени кристаллизации вещества. ПВД примененяют в следующих направлениях:

  • Изготовления выдувных изделий.
  • Выпуск пленок для упаковки.
  • Литье пластмасс под давлением.
  • Выпуск кабельной продукции.

Процесс изготовления ПЭВД — температура 200- 260 0 С, давление 150 – 300 МПа. Присутствие кислорода или органического пероксида обязательно.

Важно. Легкий эластичный, кристаллизующийся материал с теплостойкостью до 60 0 имеет один существенный недостаток – быстро стареет.

Пленки из полиэтилена

При производстве пленки и листов из полиэтилена может быть использован материал любой плотности. Популярная характеристики которой значительно выше, чем у других видов упаковки — один из самых востребованных и экономичных товаров. Современные технологии позволяют создать пленку из ПЭ толщиной от 0,03 мм, длина рулона достигает 300 м.

Пленка пригодна для упаковки пищевой продукции, сохраняет качество и внешний вид товара. Давно стали привычными некоторые виды спецодежды, изготовленные из непромокаемой пленки – плащи, накидки, перчатки хозяйственные и многое другое.

Армированная пленка характеризуется высокой прочностью и используется для изготовления скатертей, упаковки, защитной одежды, для производства теплиц. Сферы применения изделий из ПЭ постоянно расширяются, свойства полиэтиленовой пленки поистине универсальны.

Упаковочный материал в листах толщиной от 1 до 6 мм с шириной до 1400 мм вырабатывают методом вакуумного формирования. Крупногабаритные изделия из ПЭНД прочно вошли в нашу жизнь. Это трубы сантехнические, ванны, бачки и емкости различного назначения. Технологические приемы разнообразят ассортимент и назначение изделий, товары народного потребления из пластмассы вошли в каждый дом.

Ведущее место в мире сегодня занимает производство изделий из полимера. Ширится разновидность марок изделий. Основные группы, выпускаемые на сегодняшний день из полиэтилена и сополимеров, насчитывает не один десяток, давая возможность развиваться новым технологиям. Выпуск востребованных и качественных товаров постоянно увеличивается, находя новые сферы применения.

Полиэтилен - термопластичный полимер с относительно невысокой твердостью, не имеющий запаха и вкуса. Различные методы исследова­ния (микроскопический, рентгено- и электронографический и др.) пока­зывают, что полиэтилен обладает кристаллической структурой, анало­гичной структуре нормальных парафинов (например, С60Н122 и др.). Степень кристалличности полимера, получаемого полимеризацией эти­лена, не достигает 100%: наряду с кристаллической фазой всегда содер­жится аморфная. Соотношение этих фаз зависит от способа получения полимера и температуры. Подобно высокоплавким воскам и парафинам он медленно загорается и горит слабым пламенем без копоти. В отсут­ствие кислорода полиэтилен устойчив до 290° С. В пределах 290 - 350° С он разлагается на низкомолекулярные полимеры типа восков, а выше 350° С продуктами разложения являются низкомолекулярные жидкие вещества и газообразные соединения - бутилен, водород, окись угле­рода, двуокись углерода, этилен, этан и др.

1.1. Молекулярная структура полиэтилена

Молекула полиэтилена представляет собой длинную цепь метиленовых групп, содержащую некоторое количество боковых групп. Чем больше боковых групп в цепочке полимера и чем они длиннее (полимер имеет разветвленную структуру), тем ниже степень кристалличности. Обычно в полиэтилене низкой плотности одна метильная группа при­ходится на 30 атомов углерода, однако можно получить полимеры, содержащие одну метильную группу как на 10 атомов углерода, так и на 1000 и более атомов углерода. Исследования показывают, что метильные группы чаще всего находятся на концах боковых цепей, состоя­щих по крайней мере из четырех атомов углерода:

Недостаточно упорядоченные участки полимерных молекул состав­ляют аморфные области. Тот факт, что величина аморфных областей возрастает пропорционально степени разветвленности молекулы, позво­ляет сделать вывод, что в аморфные области входят части разветвлен­ных молекул.

В расплавленном состоянии полиэтилен находится в аморфном со­стоянии. Независимо от скорости охлаждения расплава полиэтилен не получен полностью в аморфном состоянии даже при моментальном охлаждении тонких пленок жидким воздухом. Быструю кристаллизацию полиэтилена можно объяснить небольшой длиной элементарных звеньев (2, 53 Å), соответствующей одному зигзагу углеродной цепи, высокой симметрией молекул и их расположением в виде пачки. Пачки намного длиннее макромолекул и состоят из многих рядов цепей. Кристаллиза­ция начинается в пачках и проходит последовательно либо через обра­зование «лент», «лепестков» и правильных кристаллов, либо через воз­никновение «лент», «лепестков» и сферолитных структур. Структу­ра молекулы полиэтилена показана на рис.1

Рис.1 Структура молекулы полиэтилена

Скорость охлаждения расплава полиэтилена определяет размеры кристаллических участков и степень кристалличности. Быстрое охла­ждение (закалка) приводит к снижению процента кристаллической фазы и увеличению размеров кристаллических участков.

Между кристалличностью и содержанием метильных групп наблюдается ясно выраженная связью Ниже показана зависимость содержания аморфной фазы от концентрации метильных групп в полиэтилене:

Число CH3-групп на 100 атомов С Содержание аморфной фазы, %

Различие в степени кристалличности обусловливает плотность полимера. Так, полиэтилен низкой плотности содержит 55-65% кристаллической фазы, средней 66-73%, а высокой 74-95%.

В образцах полиэтилена с высокой степенью разветвленности весовая доля кристаллической фазы может достигать 40%.

С повышением температуры снижается степень кристалличности полимера: снижение становится все более резким по мере приближения к температуре размягчения (рис. 2).

Рис 2. Изменение доли кристаллической фазы в полиэтилене с повышением температуры

Кристаллические участки в полиэтилене имеют длину до нескольких сот ангстрем и соответствуют не целой молекуле, а небольшой части ее, так что одна полимерная молекула (длина ее достигает 1000 Å) может проходить через несколько кристаллических областей.

Конфигурация и упаковка линейных молекул полиэтилена в кристаллитах такие же, как у молекул нормальных олефинов. Об этом свидетельствуют размеры прямоугольной элементарной кристаллической ячейки: а = 7,40 Å, b =4.93 Å, с = 2,534 Å.

Период идентичности в 2,534 Å соответствует повторяющемуся расстоянию зигзагообразной углеродной цепи между атомамиуглерода С-С 1,54 Å и углу между углеродными связями 109 28"

Соседние молекулы находятся на расстоянии 4,3 Å друг от друга; атомы же водорода соседних молекул так расположены по отношению друг к другу так, что расстояние между их центрами становится почти постоянной величиной 2,5 Å , т. е. равно удвоенной величине эффективного ван-дер-ваальсового радиуса 1,25 Å. Кристалличность полимера при обычных температурах влияет посредственно на многие его свойства: плотность, поверхностную твердость, модуль упругости при изгибе, пределы прочности и текучести, растворимость и набухание в органических растворителях, паро- и газопроницаемость.

В присутствии катализаторов Циглера и Филлипса можно провести сополимеризацию этилена и α-олефинов и тем самым контролировать число ответвлений. Так, например, сополимер этилена и пропилена (6,25% по весу пропилена) содержит 21 метильную группу на 1000 угле­родных атомов и имеет кристалличность на 20% меньше кристаллич­ности полиэтилена. Сополимер этилена и 1-бутена (5,6% по весу 1-бутена) при наличии 14 этильных ответвлении на 1000 углеродных атомов снижает кристалличность на 20%, т. е. 1 этильная группа эквивалентна 1,5 метильным группам по влиянию на снижение степени кристаллич­ности сополимеров.